
Grant Proposal:
An Ethereum Light Client on Axelar

Shresth Agrawal1,2, Dionysis Zindros1,3,
Dimitris Karakostas1,4, and Apostolos Tzinas1,5

1 Common Prefix
2 Technische Universität München

3 Stanford University
4 University of Edinburgh

5 National Technical University of Athens

May 1, 2023
Last update: January 8, 2024

Abstract. Axelar network is a decentralized interoperability layer that connects a large
set of blockchains. Axelar is based on the Cosmos SDK and defines a set of Tendermint
proof-of-stake validators, who can relay events from supported chains to the Axelar Cosmos
side. In particular, Axelar leverages multiple validation models for events happening on the
supported EVM chains. Such events can be reported via IBC light clients, when possible,
or attestations from Axelar’s proof-of-stake validators. Axelar validators are expected to
run full nodes of the EVM chains to gather event information. However, this operation is
typically expensive, such that the entry and maintenance costs for validators increase, along
with possibly leading some validators to use centralized RPC providers. This proposal aims
to reduce operational costs and increase Axelar’s level of decentralization. Specifically, we
advocate for an on-chain light client to run as an Axelar module that trustlessly consumes
source data. Such a light client checks the veracity of cross-chain claims to ensure the relevant
events have been included in the canonical source chain, safeguarding against untrustworthy
EVM RPC providers. Focusing on Ethereum, we discuss and contrast several possible flavors
of light or superlight clients based on Simple Payment Verification (SPV), zero knowledge,
or refereed games. Tailoring the solution to the particularities of Axelar, we recommend SPV
as the most suitable choice. We present an architecture blueprint and estimate the workforce
allocation as well as the cost needed for the effort. Lastly, we put forth a theoretical model
to support the need for such design changes. Theoretically, our proposed changes enable
the system to endure temporary dishonest advantages among Axelar validators and restore
safety following the re-establishment of an honest supermajority.

1 Introduction

Blockchain technology has revolutionized the way we create trustless and decentralized
applications, offering immense composability and the ability to build complex primitives.
However, the blockchain landscape is far from homogeneous, with multiple ecosystems
that are based on their own consensus protocols and offer varying security and operation
features.

Axelar6 enables interoperability between diverse blockchain ecosystems. Axelar is based
on the Cosmos SDK7 and aims to interlink various blockchain ecosystems, such as Cosmos,
Ethereum, Bitcoin, Polygon, and others. Notably, it has been identified as one of only two
possible solutions that are sufficiently secure across the stack to be used by the leading
decentralized exchange, Uniswap [12].

Ethereum, in particular, is one of the most widely used blockchains, hosting a mul-
titude of decentralized applications spanning various sectors, including finance, gaming,

6https://axelar.network
7https://cosmos.network

https://axelar.network
https://cosmos.network

and governance [3, 13]. Therefore, establishing a seamless and secure connection to Ethe-
reum is of paramount importance for Axelar. This proposal focuses on building a trustless
connection between Axelar and Ethereum.

1.1 Current Construction

Currently, Axelar implements a Tendermint-based delegated proof-of-stake consensus mech-
anism [2, 10]. In particular, validators lock stake in the Axelar chain and receive stake
delegations from Axelar users. The top 75 validators, based on the aggregate (self and
delegated) stake, are chosen to participate in Axelar’s consensus mechanism.

Axelar adopts a modular architecture to connect with different chains. Each connector
module consists of two essential components. The first component verifies source chain
data (e.g., Ethereum) into Axelar. The second component generates threshold signatures,
which can be verified on the source chain. In this report, we focus exclusively on the
former, that is verification of source chain data that are bridged into Axelar.

Currently, connectors utilize an on-chain voting mechanism within Axelar to verify
transactions that occur on the source chain. The validators who participate in a connector
attestation are called attestors. To determine the voting power of an attestor, Axelar
employs quadratic voting. Briefly, the voting power of an attestor is the square root of
their total stake. This mechanism aims to ensure a fair distribution of influence among
attestors, based on their stake. Attestors are required to run a full node of the source chain
and have access to the full node’s RPC (Remote Procedure Call) interface. This enables
them to verify the finalized transactions on the source chain, before voting to bridge them
on Axelar.

To bridge data from the source chain to Axelar, a user interacts with an Axelar smart
contract on the source chain. Subsequently, the user accesses the connector module on
Axelar and initiates a voting poll, which is viewed by attestors. For each poll, an at-
testor decides whether to vote for or against. To make an informed decision, the attestor
queries the source chain’s full node RPC and checks if the transaction under question has
been finalized on the source chain. If a poll receives sufficient attestations, it is accepted,
otherwise it is rejected.

This voting process forms the basis of verifying the source chain data into Axelar.
Nonetheless, for the connector construction to function securely, both the source chain and
Axelar are assumed safe and live. In addition, the (quadratic) voting power distribution
among the attestors is assumed to have an honest majority.

1.2 Problem Statement

The current construction of Axelar relies on attestors running the full node of the source
chain to verify transactions and vote in an informed manner. As the Axelar network
expands its support for additional chains, attestors will be required to run an increasing
number of full nodes to verify transactions from these source chains.

However, running a full node, or many, imposes significant costs on attestors.8 In order
to maintain a diverse and robust ecosystem, comprising a multitude of participants, it is
important to develop cost-effective and efficient solutions.9 Such solutions could reduce

8Indicatively, running a full Ethereum node requires 4+ CPU cores, 16+ GB RAM, at least 1 TB SSD,
and 25 Mbps of stable connection (source: https://www.quicknode.com/guides/infrastructure/node-
setup/ethereum-full-node-vs-archive-node).

9In practice, systems that impose significant costs for running a full node often demonstrate central-
ization tendencies, where participants tend to rely on third-party service providers to run and maintain

2

https://www.quicknode.com/guides/infrastructure/node-setup/ethereum-full-node-vs-archive-node
https://www.quicknode.com/guides/infrastructure/node-setup/ethereum-full-node-vs-archive-node

the entry and maintenance costs for new validators, also possibly leading to more value
being gained for users.

To address this challenge, we propose a construction that enables users and attestors
to verify the consensus of the source chain within the Axelar execution layer. This is
accomplished through light and super-light client constructions of the source chain.

In this report, we explore several constructions for light and super-light clients tailored
specifically for Ethereum. We then propose a construction that best aligns with Axelar’s
vision and requirements, aiming to drive decentralization, enhance security, and improve
scalability. Our construction makes use of Ethereum’s sync committee and guarantees
bridge safety, assuming at least one Axelar attestor is honest.

Ethereum Axelar

deposit tx

✓

Ethereum
Light Client
(CosmWasm)

Prover ClientUser

sync committee
j - 1

sync committee
j

handover
signature

block signature

✓ ✓

TendermintCasper FFG

On-chain validation:
● Handover signature
● Block signature
● Merkle inclusion

✓✓ ✓ ✓ ✓ ✓

deposit tx confirmed tx

Wallet Ethereum
Fullnode

Axelar
Fullnode

Axelar
full node

light client
proof

Fig. 1: We recommend implementing an on chain light client using sync committee. The
light client will be implemented as a go module that will be deployed on the Axelar
network. The light client will be responsible for verifying the handover signatures, block
signatures and Merkle inclusion proofs.

1.3 Preliminaries

Bridge
A bridge is an interoperability protocol between two ledger protocols. The purpose of the
bridge is to relay events or information that take place on the source side to the destina-
tion side [9, 15]. In particular, the parties that maintain the bridge transmit cross-chain
transactions, such that a transaction on the source side is represented by an “image” on

the full nodes on their behalf. Due to economies of scale, a large portion of these networks tends to cluster
around a small number of such providers; e.g., at times, 50% of Ethereum’s transactions ran through one
such provider, Infura [8]. Therefore, proactively addressing such hazards can lead to a healthier, more
diverse and robust ecosystem.

3

the destination side. There are two core properties that a secure bridge should guarantee:
safety and liveness.10

Bridge Safety. Bridge safety mandates that a transaction appears on the destination side
only if it has first appeared on the source side, albeit with some delay. Intuitively, safety
ensures that bad things don’t happen, that is it’s impossible to find a transaction paying
out on the destination without its “pre-image” having appeared on the source side. In
essence, if safety is guaranteed, an adversary cannot create money on the destination side
without having paid on the source side.

Bridge Liveness. Bridge liveness ensures that a transaction which appears on the source
side will eventually make it to the destination side. Intuitively, this guarantees that good
things happen, that is whenever an honest party attempts to cross the bridge, it will
successfully do so.

Light Clients
A light client is a client that wishes to synchronize with the rest of the network, but has
limited resources available in terms of communication, computation, and storage. One
example of a limited resource computer is the on-chain smart contract infrastructure of
Axelar, where computation and storage are expensive. The light client begins its lifecycle
holding the genesis block and synchronizes to the current tip of the canonical chain once
in a while. Our job when building a light client is, given a block that the light client has
already downloaded sometime in the past, to allow the client to synchronize with the most
recent chain tip.

Ethereum Sync Committee
One useful ingredient of the Ethereum ecosystem that enables the construction of efficient
light clients is the so-called sync committee [6]. This feature was introduced in the system’s
“Altair” hard fork and is specifically tailored for use of light clients, as we will discuss in
the alternatives of Section 2.

The sync committee consists of 512 of Ethereum validators. They are randomly se-
lected, from the set of all validators, every sync committee period (approx. 1 day). Each
honest validator in the sync committee is continually online and signs the header of each
block during the sync committee period.

The sync committee of period X is decided one periods in advance, that is the beginning
of period X − 1. As headers of the current period X containing the root of the next sync
committe X+1 are signed by the current sync committee X, the signatures of the current
sync committee act as a handover mechanism from the current committee to the next. A
prover can provide signatures from 2/3 of the current committee on some header of current
period as a proof of validity of the next committee. Note that there can be multiple headers
in the current period which can have more than 2/3 sync committee signatures on them.
The prover can choose any of these headers with their respective signatures as a proof.

We demonstrate the usage of the sync committee with the following example. Assume
that a client C holds the block header of some slot N , that is part of the sync committee
period X. When C wants to authenticate the header of a block at slot N ′, which is part of
the period X + 1, it proceeds as follows. First, C validates the sync committee of period
X+1. To do so, it verifies that the Merkle root of the committee was published in a block

10Appendix 5.1 offers a formal definition of these properties.

4

header of period X; if so, C updates its sync committee for X + 1 as the one defined in
the Merkle tree. At this point, C can validate every block header for each slot of period
X + 1, by obtaining the corresponding signatures of the sync committee of that period.

Using this iterative process, the light client can validate all future blocks, starting
from an initial trusted point. The cost of validating a block depends on the size of the
committee, the aggregate signature, and the Merkle path; in Ethereum this is estimated
to approx. 25KB [6].

There are two main points of discussion around the sync committee. First, the com-
mittee should be honest. In essence, the sampling process, via which the sync committee’s
members are chosen from the set of all Ethereum validators, should be secure, s.t. the
probability that 2

3 of the committee members are adversarial is negligible. Observe that,
if the committee is malicious, then it can convince a light client of a fraudulent Ethereum
state. Second, slashing is currently not implemented in the sync committee. Therefore,
a committee member can double-sign, i.e., sign conflicting blocks, without direct coun-
terincentives. Whether committee members are incentivized to behave in such manner is
outside the scope of this document, although it is an interesting research question.

2 On-Chain Light Client

We now present an array of solutions for the on-chain light client. For each solution we
give a high-level overview, highlighting its mechanics as well as possible shortcomings.
Each alternative offers different features and relies on different assumptions.

We note that all solutions require that at least one Axelar attestor is honest, in order
to guarantee liveness. Additionally, all solutions, except the first, rely on Ethereum’s sync
committee.

SPV Light Client (sampling validators)
The first solution makes use of Ethereum’s validators. In particular, we assume that there
exists a mechanism for sampling some of the signatures that were produced by the val-
idators on each block. To verify an Ethereum block, the light client checks: i) that the
sampling process was done correctly (e.g., following a verifiable pseudorandom process);
ii) that the provided signatures correspond to active Ethereum validators; iii) that enough
signatures have been provided to guarantee the block’s correctness.

An advantage of this solution is the non-reliance on the sync committee. In particular,
the only assumption that is needed is that Ethereum is safe and live (which is already
assumed) and that the probability of sampling adversarial signatures is negligible.

However, it also presents various shortcomings. First, Ethereum’s consensus relies on
Casper FFG [4] and LMD-GHOST. This is particularly complicated and it is unclear how
a secure signature sampling process can be implemented. Second, it is unclear how the
light client can retrieve the active Ethereum validators at any point in time. In particular,
assuming that the light client starts from a trusted block header, it is unclear how to
obtain each following period’s validators, in a succinct and efficient manner.

SPV Light Client (Sync committee)
This solution makes direct use of Ethereum’s sync committee. In particular, each sync
committee is recorded on Axelar. When an attestor wants to bridge a transaction from
Ethereum to Axelar, it accompanies it with a proof of inclusion in a block that has been
validated by the corresponding sync committee. Following, when an Axelar full nodes

5

wants to validate an Ethereum transaction that has been bridged to Axelar, it first iden-
tifies (on Axelar’s chain) the sync committee and that corresponds to the transaction and
then validates the proof w.r.t. it.

This scheme assumes that, at the bridge’s onset, the sync committee is recorded on
Axelar correctly. In other words, the first sync committee that is recorded on Axelar
should be correct. Following, each update to the sync committee is accompanied by a
proof of a handover, that is an Ethereum block that has been signed by the previous
committee. Note that, even if Axelar’s security is compromised, the adversary cannot
produce a proof of a handover to an invalid sync committee (since this depends on the
sync committee’s security). Therefore, the honest Axelar nodes will always hold a valid
list of sync committees (albeit this could possibly be outdated, if liveness is violated).

The major advantage of this solution is that it is straightforward to implement. In
particular, the sync committee has already been implemented in Ethereum and there
exists a large body of community projects and tools that already implement light client
based on sync committee, such as Kevlar11 and Helios12.

There are some disadvantages with this solution though. First, it relies on the security
of Ethereum’s sync committee. Second, the storage requirements increase linearly over
time, since each sync committee (which is updated approx. every day) is recorded on
Axelar’s chain. This can result in significant storage overhead, since the mechanism requires
approx. 25KB per committee [6].

Refereed Light Client
This mechanism makes use of Ethereum’s sync committee in a manner similar as the
previous solution, but aiming to reduce the storage requirements.

In brief, the idea is to (optimistically) assume that an attestor provides honest data
about the updated sync committees and enable a dispute resolution mechanism in case the
attestor is malicious [1]. Specifically, we assume that the bridge is updated every x (sync
committee) periods. In the previous solution, each committee is recorded on Axelar’s chain.
Here, there exists an Axelar attestor who collects the x committees, each corresponding to
the sync committees for the corresponding periods, and publishes a commitment to them
on Axelar altogether. If the attestor is honest, then the commitment should be correct.
Therefore, the other Axelar nodes can “fast-forward” these x committees.

Nonetheless, the attestor might be malicious and submit an incorrect commitment.
To cover this possibility, there exists a contest period, during which another attestor can
challenge the first attestor’s submission. The challenger provides an alternative commit-
ment, at which point the dispute needs to be resolved. This is done by opening both
commitments and identifying the point of divergence between the two committee lists.
At this point, both attestors are required to submit proof of correct transition, that is
to reveal the (sync committee) keys that correspond to the last agreed committee along
with (this committee’s) signatures on the keys that correspond to the first committee of
disagreement. Since the sync committee is presumed honest, one of the two lists will be
revealed as fraudulent, since it should be impossible to provide the necessary signatures
that validate the transition under question.

We propose two manners in which the commitment can be implemented.

Linear In this case, the commitment is a list of hashes, with each hash corresponding to a
sync committee. The main benefit of this solution is that disputes can be resolved easily,

11https://github.com/lightclients/kevlar
12https://github.com/a16z/helios

6

https://github.com/lightclients/kevlar
https://github.com/a16z/helios

since the point of disagreement can be identified directly by comparing the two lists element
by element. Once the point of disagreement is identified the attestors need to open the
last agreed committee, the committee of disagreement and the handover signatures from
the last agreed committee to the committee of disagreement. However, the asymptotic
complexity of this solution is again linear on the number of committees, the proof size
is significantly smaller than the previous solution as only committee hashes have to be
submitted instead of complete sync committee public keys.

Bisection Here, the commitment is a Merkle tree, the leaves of which correspond to the
hash of each sync committee. Initially the attestor publishes the root of the tree. In case of
a dispute, the challenger provides an alternative root and initiates an interactive dispute
resolution protocol. In each round the attestors open the children of the disputed node.
Then the on chain protocol checks if the children are correct (i.e. the hash of the children
matches the hash of the node) and compares left child and then the right child. If the
left child is already different for the two attestors the next disputed node is set to the left
child, otherwise to the right child. This process is recursively repeated until we reach the
leaf of the tree which is also the first point of disagreement. At this point the attestors
can follow the same protocol as the linear case to resolve the dispute.

The advantage of this solution is that the storage complexity is constant in the opti-
mistic case (i.e. the attestors are honest and no dispute resolution is required) where as it
falls back to poly logarithmic complexity in the case of dispute resolution. [1, 11].

Finally, we note that the advantage of the refereed light client solution only manifests
if the bridge is synchronized infrequently and dispute resolutions are rare. If, for example,
the bridge is synchronized every day (that is, x = 1), then the benefit is marginal even
in the optimistic case. In addition, implementing a dispute resolution mechanism securely
adds complexity. Finally, the length of the contest period affects the bridge’s latency, since
it should be large enough s.t. an honest party can challenge an invalid commitment, but
small enough to avoid increasing latency significantly.

SNARK Light Client
The final solution is based on zero-knowledge, namely SNARK proofs (Succinct Non-
interactive ARguments of Knowledge). The goal of this solution is to reduce the proof of
validity of each bridged Ethereum transaction.

The setup of this solution is similar to the sync committee-based solution above. Specif-
ically, each committee hash is published on Axelar, along with a proof of handover for the
committee transitions.

In particular, when an attestor wants to bridge an Ethereum transaction to Axelar,
it produces a zero-knowledge proof. This proof replaces the aggregate public key and
signatures, which were used before for validation. Instead, it proves that there exists a
quorum of at least 2

3 sync committee members that have signed the transaction under
question.

The main advantage of this solution is that SNARKs can be very efficient in terms
of proof sizes. For example, a Groth16 [7] proof consists of only 2 group elements, that
is approx. 209 bytes. In fact we can generate a constant size proof for increasing length
of sync periods. But this benefit can not be realised in the current bridge construction
because the bridge is continuously syncronised and therefore the proof data submitted to
the chain will grow linearly with the number of sync periods.

One main disadvantage of this solution is implementation complexity and cost. Se-
curely implementing ZK-SNARKs can be particularly challenging, even more so since they

7

have been developed fairly recently. Additionally, the cost of generating a SNARK can be
particularly high. For example, according to [14], proving consensus (of 128 validators) on
one Cosmos block takes 18 seconds on 32 instances of Amazon AWS c5.24xlarge. (We
are unable to independently reproduce this finding because the authors of zkBridge have
not disclosed their code.) At Cosmos’ block rate of 1 block per second, that would re-
quire 18×32 continuously operating c5.24xlarge instances, costing annually $12,967,488
on Amazon AWS (annual pricing, us-east-1 region, June 2023), or $1,749,600 on Het-
zner’s equivalents. Scaling this proportionally for Ethereum yields an estimate of $583,333
annually.

Comparison
Table 1 summarizes the comparison of the alternatives presented above. Note that, in all
cases, Ethereum is assumed safe and live, as well as, in order to guarantee bridge liveness,
we assume that at least one Axelar attestor is honest (in some cases, this assumption is
needed also for bridge safety).

SPV Refereed SNARKSampling Sync Committee Linear Bisection
Proof Size
(Annual) 365 · 25 KB 365 · 25 KB 365

x
· (25KB + x · 32B) 365

x
· (25KB + 32B) 365 · (209 + 32) B

Non-interactive 3 3 7 7 3

Doesn’t rely on
Sync Committee 3 7 7 7 7

Extra Safety
Assumptions - - Exists honest

Axelar attestor
Exists honest

Axelar attestor -

Implementation
Complexity High Low Medium Medium High

Cost of one
prover annually $600 $600 $600 $600 >$500,000

Table 1: Comparison of alternative solutions. All solutions assume that: i) Ethereum is
secure (safe and live); ii) to guarantee bridge liveness, there exists an honest Axelar at-
testor. In the refereed case, we assume that the bridge is updated every x days (where 1
sync committee period is equal to approx. 1 day). Also, in the refereed case we compute
the best-case scenario, where no disputes occur. In the SNARK case we assume the usage
of Groth16 proofs. Our recommendation is highlighted in gray.

Our recommendation
We recommend implementing the second option, that is an SPV client that relies on the
sync committee. From the above comparison, it is evident that the first option (SPV client
with Ethereum validator sampling) is rather experimental and requires significant research
work before proceeding with implementation.

Due to the high traffic that the bridge is expected to observe, it will be updated at
least on a daily basis, so the main benefit of the refereed constructions would be lost.

Finally, the exceptional cost of creating SNARK proofs at this point in time makes it
prohibitively expensive as an option. Nonetheless, we will design the bridge in a modular
way, such that a SNARK solution can be easily incorporated in the future, when proof
creation becomes more cost efficient.

8

3 Construction & Implementation Details

In this section, we discuss the construction and implementation details of the suggested
SPV style sync committee based light client. Note that the details of the contruction
are not final and are subject to change. The client will be implemented as a CosmWasm
module. On a high level, the new construction would work as follows:

1. A user initiates the bridge transfer by sending a transaction to a designated smart
contract on the Ethereum (source) chain, similar to the existing construction.

2. A (possibly different) user then submits a request on the Axelar network with the
corresponding Ethereum transaction’s hash.

3. Axelar attestors then query the full node to check if the Ethereum transaction is
finalized; if so, they generate a light client proof with two components: (i) a consensus
verification proof; (ii) an execution verification proof.

4. The attestor submits this proof on the Axelar (destination) chain.
5. The proof is verified on-chain by the Axelar full nodes; if the proof is valid, the trans-

action is executed on the Axelar chain.

3.1 Consensus Verification

This module is responsible for keeping track of the latest finalized block and the latest
sync committee. To verify the finalized block and the sync committee we use the aggregate
sync committee signatures as a proof. Now we will discuss how we can obtain this proof
using existing beacon chain APIs and how these proofs can be verified on chain.

– Update Latest Sync Committee. This proof validates the sync committee han-
dover, that is updating the committee from one period to the next. It can be generated
using Ethereum’s beacon chain API,13 specifically the endpoint
/eth/v1/beacon/light_client/updates. The proof’s verification involves checking
the BLS aggregate signature of the sync committee and the Merkle inclusion proof of
the next sync committee to the signed header.

– Update Latest Finalized Block This proof allows for updating the latest finalized
block. It can be generated using the beacon chain API endpoint
/eth/v1/beacon/light_client/finality_update. Its verification involves checking
the BLS aggregate signatures of the latest sync committee on the latest finalized block.

3.2 Execution Verification

This component is responsible for generating and verifying the execution verification proof.
We note that the scope of this grant proposal includes only verifying if a transaction is
included in a block or a certain event was released by a smart contract.

The execution proof mainly constitutes of a Merkle inclusion proof of the relevant
transaction or event to the finalized block header received from the consensus verification
component. The proof is generated by fetching the complete block, which contains all the
transactions and events, and generating the Merkle inclusion proof. Following, the proof
verification is a straightforward Merkle inclusion check.

13https://ethereum.github.io/beacon-APIs

9

https://ethereum.github.io/beacon-APIs

4 Grant Proposal

This project will be implemented in the course of 4− 6 months. Members of the Common
Prefix team will be involved on an as-needed basis, depending on the expertise required.
For example, the following people will likely be relevant to the project’s implementation:

– Dionysis Zindros is a post-doctoral researcher at Stanford University. His research
is focused on light and superlight clients, on which he did his Ph.D. dissertation,
“Decentralized Blockchain Interoperability.” Some of his relevant published works in-
clude Non-Interactive Proofs of Proof-of-Work, Proof-of-Work Sidechains, Proof-of-
Stake Sidechains, Mining in Logarithmic Space, Light Clients for Lazy Blockchains,
Proof of Burn, The Velvet Path to Superlight Blockchain Clients, Compact Storage
of Superblocks for NIPoPoW Applications, Smart Contract Derivatives, and A Gas-
Efficient Superlight Bitcoin Client in Solidity. He co-authored the “Proofs of Proof of
Proof of Stake in Sublinear Complexity” paper. He has published in top peer-reviewed
conferences, such as IEEE Security & Privacy, ESORICS, Financial Cryptography
(and the Workshop on Trusted Smart Contracts), and Advances in Financial Tech-
nologies. Regarding practical software engineering experience, Dionysis has worked on
the Product Security team at Twitter and the Incident Response Development team at
Google. He has also presented at practical security conferences like Black Hat Europe
and Black Hat Asia.

– Shresth Agrawal is a developer, researcher, and entrepreneur. He is one of the authors
of the “Proofs of Proof of Stake in Sublinear Complexity” paper and was responsible
for building the first ever light client for Ethereum, Kevlar. He has experience building
efficient and secure algorithms, protocols, and smart contracts for several DeFi proto-
cols. Previously, he worked at ParaSwap, where he was responsible for architecting and
developing a large portion of the core aggregation algorithm. He was awarded by the
President of India for his research on contagious diseases. Shresth completed his Bach-
elor’s degree from Jacobs University Bremen and is currently pursuing his Master’s
degree at Technical University Munich. He is interested in Cryptography, Security,
Consensus Protocols, Decentralized Finance, and Ethereum.

– Apostolos Tzinas is a smart-contracts software engineer. He is pursuing a joint Bach-
elor’s and Master’s in Electrical and Computer Engineering at the National Technical
University of Athens. Apostolos has extensive front-end software engineering experi-
ence working at Maya Insights and NutriDice, where he took on a full-stack software
engineering role. He has worked with numerous programming languages and technical
stacks. He loves algorithms, and as a high school student, he participated in Informatics
Olympiads, such as the Junior Balkan Olympiad in Informatics.

– Dimitris Lamprinos is a software engineer based in Thessaloniki. He holds a Bache-
lor’s degree in Computer Science from the Aristotle University of Thessaloniki. Dimitris
works on smart contract development and basic consensus development. He has signif-
icant experience in developing and scaling web2 applications in Amondo, Geekbot, and
Vidpulse. He also has algorithmic cryptocurrency trading experience and has worked
on developing and deploying smart contracts to the Ethereum blockchain since the
early days of ICO boom.

This project will be executed in multiple phases, described in detail below.

10

https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2018/1048.pdf
https://eprint.iacr.org/2018/1048.pdf
https://eprint.iacr.org/2018/1048.pdf
https://eprint.iacr.org/2021/623.pdf
https://arxiv.org/abs/2203.15968
https://eprint.iacr.org/2019/1096.pdf
https://eprint.iacr.org/2020/1122.pdf
https://eprint.iacr.org/2019/1444.pdf
https://eprint.iacr.org/2019/1444.pdf
https://eprint.iacr.org/2020/138.pdf
https://eprint.iacr.org/2020/927
https://eprint.iacr.org/2020/927

4.1 Phase 1: Architectural Design

During this phase, we will study the Axelar codebase in depth and propose a suitable ar-
chitecture, consisting of a CosmWasm module that will implement the on-chain Ethereum
light client. Our approach will stick to the following principles:
– Respectful of previous work. Our proposed architecture will require minimal changes

to the codebase, maintaining the existing design choices of the codebase.
– Extensibility. The architecture will allow extending the light client to different source

chains in the future, beyond Ethereum.
– Modularitity. The architecture will be modular, in a way that allows upgrading to a

different proof mechanism (e.g., SPV or ZK) and makes the protocol future-proof.

Deliverables. At the conclusion of this phase, we will deliver the following items:

– A detailed design document, that describes the architecture of the light client to be
implemented on Axelar. The design document will detail the different components
that we will develop. These include the CosmWasm module which will run within the
Axelar codebase (acting as the verifier), as well as the modifications needed on the
attestor codebase (also part of the full node), so that attestations can be reported to
the on-chain verifier.

The document will be delivered in LaTeX PDF format and include pseudocode for the
relevant components, so that their role is clear from a theoretical point of view.

4.2 Phase 2: Consensus Validation

During this phase, we will implement the consensus components of the on-chain light
client. The implementation will be based on the outcome of Phase 1. Based on our current
understanding of the Axelar architecture, during the consensus implementation phase we
will implement the following:
– verification of the Ethereum sync committee handover signatures, including aggregate

signature verification and quorum logic;
– verification of latest finalized block using sync committee signatures and Ethereum

finalization logic.

Deliverables. At the conclusion of this phase, we will deliver the following items:

– A Cosmos CosmWasm module, which implements the consensus components of the
on-chain Ethereum light client.

– A test suite, which verifies the correctness of the consensus components.
– A component that allows any friendly-but-untrusted party to submit to the on-chain

verifier the consensus attestation data (sync committee signatures and block headers),
produced via the Ethereum Beacon chain API.

4.3 Phase 3: Execution Validation

This phase consists of implementing the execution logic of the on-chain Ethereum light
client, responsible for checking EVM-related data (such as Ethereum transactions and
events). In particular, we will implement the verification of Ethereum execution data,
given a validated finalized Ethereum block. This includes the verification of transactions
and events and checking the validity of the Merkle proofs for transactions and/or events
as needed.
Deliverables. At the conclusion of this phase, we will deliver the following items:

11

– An extension of the CosmWasm module (developed during Phase 2), that implements
the execution components of the on-chain Ethereum light client.

– A test suite that verifies the correctness of the execution components of the CosmWasm
module.

4.4 Phase 4: Theory, Deployment & Audit

During this phase, we will formalize the light client’s construction and prove its security
guarantees in a formal and rigorous manner.

We will also deploy the light client on Axelar’s testnet and hand over the codebase
with documentation to the Axelar team. We expect the Axelar team to conduct an audit
of the codebase, before deploying it to the mainnet.

During this phase, we will help the Axelar team with the audit process and fix any
issues that arise.
Deliverables. At the conclusion of this phase, we will deliver the following items:

– Testnet deployment of the Ethereum light client to the Axelar network (Lisbon).
– Handover of the codebase to the Axelar team with proper documentation.
– A LaTeX document that formalizes the light client construction and proves its security

guarantees.
– Any fixes to the codebase that may be required as a result of an audit by the Axelar

team.

References
1. S. Agrawal, J. Neu, E. N. Tas, and D. Zindros. Proofs of proof-of-stake with sublinear complexity,

2023.
2. E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on bft consensus, 2019.
3. V. Buterin et al. A next-generation smart contract and decentralized application platform. white

paper, 2014.
4. V. Buterin and V. Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437, 2017.
5. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. pages

136–145, 2001.
6. Ethereum. Minimal light client, 2023.
7. J. Groth. On the size of pairing-based non-interactive arguments. pages 305–326, 2016.
8. O. Kharif. Key player in ethereum infrastructure infura rejects centralization claim, 2022.
9. P. McCorry, C. Buckland, B. Yee, and D. Song. Sok: Validating bridges as a scaling solution for

blockchains. Cryptology ePrint Archive, Paper 2021/1589, 2021. https://eprint.iacr.org/2021/
1589.

10. A. Network. Axelar network: Connecting applications with blockchain ecosystems, Jan 2021.
11. E. N. Tas, D. Zindros, L. Yang, and D. Tse. Light clients for lazy blockchains, 2022.
12. Uniswap. Bridge assessment report, 2023.
13. G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow

Paper, 151:1–32, 2014.
14. T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia, D. Boneh, and D. Song. zkBridge: Trustless

Cross-chain Bridges Made Practical. In CCS, pages 3003–3017. ACM, 2022.
15. A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. A. Moreno-Sanchez, A. Kiayias, and

W. J. Knottenbelt. Sok: Communication across distributed ledgers. In IACR Cryptology ePrint
Archive, 2019.

5 Appendix

5.1 Theoretical Analysis

In this section we present the model for the theoretical analysis of the bridge framework.
We also present conjectures that we plan to prove if the grant is approved.

12

https://eprint.iacr.org/2021/1589
https://eprint.iacr.org/2021/1589

5.2 Preliminaries

Execution model. A ledger protocol Π is a distributed protocol that offers a read and
write functionality. The ledger protocol is accompanied by a validity language VΠ con-
taining all possible transactions that are “legal” according to the protocol Π. The read
functionality returns a ledger in V∗

Π , whereas the write functionality accepts a ledger and
a transaction in VΠ . The ledger is a finite sequence of pairs (t, tx) consisting of an integer
timestamp t and a transaction tx.

A particular protocol execution is one run of an environment ZΠ,A [5] which simulates
the execution of Π among multiple honest and adversarial parties. The adversarial parties
are controlled by one PPT adversary A. The adversary and honest parties are modelled as
Interactive Turing Machines. Out of the nΠ parties maintaining the ledger, tΠ are corrupt
and are controlled by the adversary A.
Networking. Time evolves in synchronous lock-step rounds denoted by the integers
1, 2, All parties have perfectly synchronized clocks, as they know the current round
number. Messages which are broadcast by an honest party at a round r are received by
all other honest parties at the beginning of the next round r + 1. The adversary can re-
order messages, potentially different for each honest party, and inject different messages
to the network tapes of different honest parties, but cannot drop messages. We work in the
client gossiping model, where a new message received by any honest party is rebroadcast
to all other honest parties; therefore, a party cannot identify the origin of a message. We
assume there are no bandwidth constraints. The total execution time is polynomial, and
each (honest or adversarial) party is bound to polynomial time per round.
Sequence notation. x ∈ A denotes that either x is an element of set A or x appears
in the sequence A. We use |A| for the length of the sequence A. We write A[i] for the
i-th element of A (0-based) and A[−i] for the i-th element of the inverse A (1-based); the
element A[−1] is the last element of A. We denote by A[i:j] the subarray of A starting
from element i (inclusive) and ending in element j exclusive. The notation A[:j] means
the sequence from the beginning up to j, whereas A[i:] means the sequence from i till the
end.
Ledgers. We denote ΠLP

r the result of executing the read functionality by party P oper-
ating in ledger protocol Π at round r. We will write a ∈ S for an element a and a sequence
S if the element a appears somewhere in the sequence S. For a ledger L we will also use the
notation tx ∈ L to mean that the transaction tx appears in L with some timestamp, that
is, there exists some t ∈ N such that (t, tx) ∈ L. In all practical blockchain-based ledger
protocols, the timestamp t associated with a transaction will correspond to the timestamp
recorded on the block in which the transaction is confirmed. As such, timestamps will all
be in the past and non-decreasing.

A ledger protocol is safe if the view of different honest parties is consistent.

Definition 1 (Persistence). A ledger protocol Π is persistent during I if for all honest
parties P1, P2 at rounds r1, r2 ∈ I, with r1 < r2, we have that ΠLP1

r1 ⪯ ΠLP2
r2 .

A ledger protocol is live if honest transactions make it to the ledger.

Definition 2 (Liveness). A ledger protocol Π is live with liveness u ∈ N during I if, for
all honest parties P1, P2, whenever P1 attempts to write a valid transaction tx to the ledger
at round r ∈ I, then for all r′ ∈ I with r′ ≥ r + u the transaction is included in ΠLP2

r′ .

Definition 3 (Timeliness). A ledger protocol Π is timely with timeliness ν ∈ N during
I if, for all honest parties P , and for all rounds r, it holds that:

13

1. ΠLP
r [−1] has a timestamp in the past, and

2. ΠLP
r has non-decreasing timestamps.

Additionally, for all rounds r ∈ I, it holds that the timestamps recorded in ΠLP
r [|ΠLP

r−1|:]
are after r − ν.

Ledger security is defined as a ledger protocol that is both safe and live.

Definition 4 (Security). A ledger protocol is secure during I with liveness u if it is:

1. persistent during I,
2. live with liveness u during I, and
3. timely with timeliness τ during I.

Bridges. A bridge Λ(Π1,Π2) is an interoperability protocol between two ledger protocols
Π1 and Π2. The execution is defined by a shared environment Z between Π1 and Π2, but
each of Π1 and Π2 are simulated internally by the environment as before. The purpose
of the bridge is to relay events or information that take place on the source side to the
destination side. Without loss of generality, we consider Π1 to be the source, and Π2 to
be the destination. If the bridge is bidirectional, our statements can be applied in both
directions. For our purposes, the purpose is to move value from one side to the other.

A population of n nodes, among which at most t are adversarial, are responsible for
operating the bridge. The bridge transmits certain transactions of interest from Π1 to Π2.
These are cross-chain transactions and are defined by a function ϕ which accompanies the
bridge protocol.

Definition 5 (Cross-chain transaction). Let ϕ be an efficiently computable and in-
vertible one-to-one injection VΠ1 −→ VΠ2 ∪ {⊥}. A transaction tx on the source side is a
cross-chain transaction if ϕ(tx) ̸= ⊥.

A bridge is secure (Definition 8) if it guarantees two fundamental properties: safety
(Definition 6) and liveness (Definition 7).

Definition 6 (Bridge Safety). A bridge protocol Λ(Π1,Π2) is safe with safety us ∈ N
during I if, for all honest parties P1 of Π1 and P2 of Π2 and for all rounds r1, r2 ∈ I with
r2 ≥ r1 + us we have that, whenever (t, tx) ∈ Π2LP2

r1 with t ∈ I and ϕ−1(tx) ̸= ⊥, then
ϕ−1(tx) ∈ Π1LP1

r2 .

Definition 7 (Bridge Liveness). A bridge protocol Λ(Π1,Π2) is live with liveness uℓ ∈
N during I if, for all honest parties P1 of Π1 and P2 of Π2 and for all rounds r1, r2 ∈ I
with r2 ≥ r1 + uℓ we have that, whenever (t, tx) ∈ Π1LP1

r1 with t ∈ I and ϕ(tx) ̸= ⊥, then
ϕ(tx) ∈ Π2LP2

r2 .

Definition 8 (Bridge Security). A bridge Λ is secure with safety us ∈ N and liveness
uℓ ∈ N during I if it is safe with safety us during I and live with liveness uℓ during I.

Conjecture 1 (Bridge security under temporary dishonest majority). We conjecture that a
bridge Λ is safe and life under temporary dishonest majority.

14

φ-1(tx)
tx

G1

G2

r2

r1

us
P1

P2

Π1

Π2

Fig. 2: Bridge safety

tx
φ(tx)

G1

G2

r1

r2

uℓ
P1

P2

Π1

Π2

Fig. 3: Bridge liveness

15

About Common Prefix

Common Prefix is a blockchain research, development, and consulting company consisting
of a small number of scientists and engineers specializing in many aspects of blockchain
science. We work with industry partners who are looking to advance the state-of-the-
art in our field to help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as
well as the pragmatic auditing of implementations in both core consensus technologies
and application layer smart contracts.

16

	 Grant Proposal: An Ethereum Light Client on Axelar
	Introduction
	Current Construction
	Problem Statement
	Preliminaries

	On-Chain Light Client
	Construction & Implementation Details
	Consensus Verification
	Execution Verification

	Grant Proposal
	Phase 1: Architectural Design
	Phase 2: Consensus Validation
	Phase 3: Execution Validation
	Phase 4: Theory, Deployment & Audit

	References
	Appendix
	Theoretical Analysis
	Preliminaries

