

BOB

On-ramp

Smart Contracts Audit

 Apr 22, 2024

Overview
Introduction

Common Prefix was commissioned to perform a security audit on BOB’s bob-onramp

repository at commit hash 297eeb1faeb7387bab142b4d2e0bcc6ef191747a.

The files inspected are the following:

OnRamp.sol

OnRampFactory.sol

Protocol Description

BOB's Onramp contracts facilitate users' onboarding onto the BOB L2 network without the need

to hold any Ethereum assets beforehand. They enable users to exchange their BTC for ERC20

tokens pegged to BTC, such as tBTC and wBTC. These tokens are provided by Liquidity

Providers (LPs).

BTC holders initiate the onboarding process by transferring a BTC amount to a BTC address

corresponding to the LP of an Onramp contract. After this transaction, a trusted relayer posts to

the Onramp contract a proof for the transaction and subsequently transfers the corresponding

token amount (minus the fees) to a specified BOB address provided by the user.

Each LP has its own Onramp contract, which should be created through the Onramp Factory

contract. Each Onramp contract is designed to hold only one type of tokens, provided by its

respective LP. Additionally, the LP contributes a small amount of ETH, which is distributed to

each user exchanging their BTC. These ETH are intended to cover the gas fees for the user's

initial transactions on the BOB network.

LPs earn fees in the form of a percentage, determined by them, of the exchanged amount. The

LP has the ability to adjust the fee percentage or collect their deposits and fees. However, any

1

https://github.com/bob-collective/bob-onramp/tree/297eeb1faeb7387bab142b4d2e0bcc6ef191747a

changes to the fee percentage or collection of funds require a certain delay (6 hours) to pass,

allowing the relayer sufficient time to execute all pending transactions before the changes take

effect. This delay mechanism ensures that users are informed about any modifications to fees

or fund collection policies before they occur.

Disclaimer

Note that this audit does not give any warranties on the bug-free status of the given smart

contracts, i.e. the evaluation result does not guarantee the nonexistence of any further findings

of security issues. This audit report is intended to be used for discussion purposes only.

Functional correctness should not rely on human inspection but be verified through thorough

testing. We always recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of the project.

Findings Severity Breakdown

The findings are classified under the following severity categories according to the impact and

the likelihood of an attack.

Level Description

Critical Logical errors or implementation bugs that are easily exploited and
maylead to any kind of loss of funds

High Logical errors or implementation bugs that are likely to be exploited and
may have disadvantageous economic impact or contract failure

Medium Issues that may break the intended contract logic or lead to DoS attacks

Low
Issues harder to exploit (exploitable with low probability), issues that
lead to poor contract performance, clumsy logic or seriously error-prone
implementation

Informational Advisory comments and recommendations that could help make the
codebase clearer, more readable and easier to maintain

2

Findings
Critical

No critical issues found.

High

No high issues found.

Medium

MEDIUM-1 executeSwap is allowed to be called unconditionally by the relayer

Contract(s) Onramp.sol

Status Resolved

Description

In the OnRamp.sol contract the following requirement is essentially a no-op:

 require(

 updateStart <= block.timestamp + UPDATE_DELAY,

 "Not allowed to execute"

);

3

Since either the updateStart has not been set by the owner, and therefore is zero, or it has been

set and equals the timestamp of a past block. In both cases the condition above is trivially

satisfied and therefore puts no restrictions.

Recommendation

We suggest fixing the require() condition so that the executeSwap function is allowed to be

executed only when either the updateStart parameter has not been set or, if it has been set,

the block.timestamp lies within the (updateStart, updateStart + UPDATE_DELAY)

time window.

Alleviation

The team fixed the issue at commit hash 416df89fffbe34b5abdb984c07dca3de59f3d106.

Low

LOW-1
No deposit function exists and the receive function does not check
msg.sender

Contract(s) Onramp.sol

Status Resolved

Description

In the OnRamp.sol contract the funds of the contract are supposed to be sent by the owner of

the contract via an immediate transfer. This practice is error prone as it does not protect the

liquidity providers from sending funds to incorrect onRamp contracts, which cannot be claimed

or returned.

4

https://github.com/bob-collective/bob-onramp/commit/416df89fffbe34b5abdb984c07dca3de59f3d106

Similarly, the receive function does not check that the msg.sender is the contract’s owner,

allowing mistaken transfers.

Recommendation

We suggest implementing a deposit function which is allowed to be called only by the

contract’s owner and clearly documenting that liquidity providers should use this function to

transfer funds to an onRamp contract for their own safety. In addition, consider reverting the

execution of the receive function when msg.sender is not the contract’s owner.

Alleviation

The team fixed the issue at commit hash d09facee46f8791390981199ed38331e4eed25c9.

LOW-2 executeSwap could fail due to insufficient gas

Contract(s) Onramp.sol

Status Resolved

Description

The executeSwap function in the OnRamp contract uses the EVM transfer method to send

ETH to the specified receiver address. However, this method forwards only a fixed amount of

2300 gas, which may not be enough for more complex operations in the receiving contract. As a

consequence, executeSwap will always fail for such a receiver, essentially concluding to a DoS.

Recommendation

We suggest using a low level call to transfer ETH funds instead and checking that it was

successful.

Alleviation
The team fixed the issue at commit hash 1b7276d672eee451f212c8f9dc46f3b5d2708ee9.

5

https://github.com/bob-collective/bob-onramp/commit/d09facee46f8791390981199ed38331e4eed25c9
https://github.com/bob-collective/bob-onramp/commit/1b7276d672eee451f212c8f9dc46f3b5d2708ee9

LOW-3 Lack of validation of the onramp contracts

Contract(s) OnrampFactory.sol

Status Resolved

Description

While the OnrampFactory contract maintains an array containing all the onramp contracts

created through its createOnramp function, this array serves no purpose within the protocol.

Specifically, in the proveBtcTransfer function, which is called by the relayer, the relayer

supplies the onramp contract related to the transaction. However, there's no validation to ensure

that this contract is listed among those held by the factory.

Recommendation

We suggest implementing a mapping to indicate whether an onramp contract was created

through the factory contract. This mapping can then be utilized to validate the onramp contract

provided by the relayer in the proveBtcTransfer function.

Alleviation

The team fixed the issue at commit hash 36a18bd37f1d7a802d4d97690592fa676dbdaf18

LOW-4 feeDivisor and gratuity parameters can be set to arbitrary values

Contract(s) Onramp.sol

Status Resolved

6

https://github.com/bob-collective/bob-onramp/commit/36a18bd37f1d7a802d4d97690592fa676dbdaf18

Description

The onramp owner currently has the ability to set the feeDivisor arbitrarily low, potentially

enforcing excessively high fees. Additionally, there is no lower bound on the amount of gratuity,

which is the small amount of ETH offered by the onramp owners to the users for gas.

Recommendation

We suggest setting constant lower and upper limit values for each of the feeDivisor and

gratuity parameters to ensure that only a small portion of the exchanged value is withheld as

compensation by the liquidity provider but also that the receiver is eligible to a non-zero amount

of gratuity.

Alleviation

The team fixed the issue at commit hash 88a4856eb6d0d33429e3f06629704adaff882960.

Informational/Suggestions

INFO-1 transferFrom can be replaced by a transfer

7

https://github.com/bob-collective/bob-onramp/commit/88a4856eb6d0d33429e3f06629704adaff882960

Contract(s) Onramp.sol

Status Resolved

Description

In the withdrawERC20 function, called when the contract’s owner intends to withdraw the

remaining deposited tokens, the transferFrom function is utilized to transfer the tokens from

the contract to the recipient. However, this operation could be simplified by replacing

transferFrom with a straightforward transfer function call.

Alleviation

The team fixed the issue at commit hash Eac3c28c6ce68df38080bf70a0e1850dd44c4575.

INFO-2 multiplier could be immutable

Contract(s) Onramp.sol

Status Resolved

Description

The calculateAmount() function converts an amount from the 8 decimal accuracy used by

BTC to the decimals of the tokens by multiplying it by the multiplier.

 uint256 multiplier = 10 ** (token.decimals() - 8);

However, the number of decimals, and consequently the multiplier, are fixed (at least for

standard ERC20 tokens). Therefore, there is no need to compute it repeatedly on each call to

calculateAmount.

8

https://github.com/bob-collective/bob-onramp/commit/eac3c28c6ce68df38080bf70a0e1850dd44c4575

Recommendation

We suggest declaring the multiplier as immutable and computing it once in the constructor.

This approach will save gas by avoiding redundant calculations.

Alleviation

The team fixed the issue at commit hash 0eb35d22a91ac7b0f6d9d1769c6bc2c2c0c2528b.

INFO-3 Missing sanity check that _txProofDifficultyFactor is non zero

Contract(s) OnrampFactory.sol

Status Resolved

Description

To prevent incorrect configurations by mistake, we suggest adding a check in the constructor to

ensure that the provided value for _txProofDifficultyFactor is non-zero

Alleviation

The team fixed the issue at commit hash 7c7b4bef36796846ad2c657083f368d6b25e6c1c.

INFO-4 Allow _dustThreshold take the minimum value

Contract(s) Onramp.sol

Status Resolved

9

https://github.com/bob-collective/bob-onramp/commit/0eb35d22a91ac7b0f6d9d1769c6bc2c2c0c2528b
https://github.com/bob-collective/bob-onramp/commit/7c7b4bef36796846ad2c657083f368d6b25e6c1c

Description

In the setDustThreshold function, callable only by the contract’s owner, the

_dustThreshold variable can be set to any value strictly greater than the minimum

_DEFAULT_DUST_THRESHOLD, which is set during deployment. We suggest replacing > with >=

to allow users to reset this variable to its original value if they wish to do so.

Alleviation

The team fixed the issue at commit hash f1bdd58ca43e6902336370a6b7cc5f2115905388.

About Common Prefix

Common Prefix is a blockchain research, development, and consulting company consisting of a

small number of scientists and engineers specializing in many aspects of blockchain science.

We work with industry partners who are looking to advance the state-of-the-art in our field to

10

https://github.com/bob-collective/bob-onramp/commit/f1bdd58ca43e6902336370a6b7cc5f2115905388

help them analyze and design simple but rigorous protocols from first principles, with provable

security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as well as the

pragmatic auditing of implementations in both core consensus technologies and application

layer smart contracts.

11

	
	
	BOB
	
	Overview
	Introduction
	Protocol Description
	Findings Severity Breakdown

	Findings
	Critical
	High
	Medium
	
	Recommendation
	Alleviation

	Low
	
	Recommendation
	Alleviation

	
	
	Description
	Recommendation
	
	Description
	Recommendation
	Alleviation
	
	Description
	Recommendation
	Alleviation

	
	Informational/Suggestions
	
	Description
	Alleviation
	
	Description
	Recommendation
	Alleviation
	
	Description
	Alleviation
	
	Description
	Alleviation

	About Common Prefix

