Espresso Hotshot Light Client Audit

Shresth Agrawal'? Pyrros Chaidos!>
Jakov Mitrovskil»?

! Common Prefix
2 Technical University of Munich
3 University of Athens

August 29, 2024
Last update: November 21, 2024

1 Overview

1.1 Introduction

Espresso Systems commissioned Common Prefix to audit their HotShot
light client smart contract implemented in Solidity. On-chain light clients
allow efficient verification of blockchain data of some other chain within
the smart contract without storing or processing the entire chain. Espresso
Systems’ light client is responsible for verifying the HotShot consensus
state transitions. This light client contract allows rollup smart contracts
integrated with Espresso to validate transaction commitments posted by
their respective sequencer. This ensures their state transitions are consis-
tent with Espresso Systems’ state commitments. The light client stores
these commitments for a specific retention period, enabling efficient ver-
ification of past commitments.

The HotShot consensus [BBC™24] initially uses BLS signatures, which
are computationally expensive to verify on-chain. To mitigate this, the
protocol (i) requires additional Schnorr signature by the consensus valida-
tors and (ii) wraps the quorum Schnorr signature verification as a SNARK
proof. In particular, the protocol employs the Turbo PlonK SNARK, part
of which (on-chain verifier) has been previously audited by Common Pre-
fix. For more details, please refer to the full audit report.

The goal of this audit was to review the light client smart contract
for security, accuracy, and performance.

1.2 Audited Files

Audit start commit: [68db136]
Latest audited commit: [2bd7cd6)


https://www.commonprefix.com/static/clients/espresso/espresso_turbo_plonk_verifier_and_bn254_audit.pdf
https://github.com/EspressoSystems/espresso-sequencer/tree/68db136d1221df584e20749ac697dcfb1ddd76ab/contracts/src/
https://github.com/EspressoSystems/espresso-sequencer/tree/2bd7cd6518288ab2810d5aede7c5e723320eb9fd/contracts/src

1. [LightClient.sol
2. LightClientStateUpdateVK.sol

Supporting documentation:

1. Espresso Systems documentation {How the Light Client Works
2. Light Client Contract Details (shared privately)

sha-256 e78£0004c2cc848006180cb0f2f510336eaacdcdf70410b3c312552581270d07

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

The scope of the audit was limited exclusively to the LightClient and
LightClientStateUpdateVK smart contracts, with no examination con-
ducted on their associated dependencies. In terms of the LightClientSta-
teUpdateVK smart contract, we have only examined the operation of the
code contained therein. Specifically, we have not verified the data used as
the verification key, its derivation or the circuit they are derived from.

1.4 Executive Summary

Overall, the code is well structured and follows development best prac-
tices. It is modularized into functions which are well documented, effec-
tively making every step of the light client protocol clear.

The main vulnerabilities identified were related to the missing val-
idation in the epoching logic. The contract allows a prover to set the
threshold and stake table values to whatever they desire, resulting in full
control of the light client state updates. Even in the permissioned prover
mode, the permissioned prover should not be able to break the safety of
the protocol, but only the liveness.

Additionally, the smart contract follows the proxy pattern which al-
lows the owner to upgrade the implementation. Contract upgradability
should be handled very carefully to avoid storage corruption. Some minor
issues include incorrect state history retention behavior and misleading
comment in newFinalizedState function. Addressing these findings would
improve the security and maintainability of the contract.


https://github.com/EspressoSystems/espresso-sequencer/tree/68db136d1221df584e20749ac697dcfb1ddd76ab/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/68db136d1221df584e20749ac697dcfb1ddd76ab/contracts/src/libraries/LightClientStateUpdateVK.sol
https://web.archive.org/web/20240522111639/https://docs.espressosys.com/sequencer/espresso-architecture/internal-functionality/light-client-contract/light-client

1.5 Findings Severity Breakdown

Our findings are classified under the following severity categories, accord-
ing to their impact and their likelihood of leading to an attack.

H Level Description H

High Logical errors or implementation bugs that are easily
exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium |Issues that may break the intended logic, are devia-
tions from the specification, or can lead to DoS at-
tacks.

Low Issues harder to exploit (exploitable with low proba-
bility), can lead to poor performance, clumsy logic, or

seriously error-prone implementation.

Informational| Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.




2 Findings

2.1 High

HO1: New threshold value not validated

Affected Code: [LightClient.sol (line 274-L317)

Summary: The current implementation does not perform validation to
the threshold value supplied in newState. This could allow a malicious
prover to set the threshold value to 0, bypass the circuit validation and
transition to any block commitment they please. The correct behavior
would be to pass the threshold value to the circuit by means of a public
input for it to be validated.

Suggestion: We recommend validating the new threshold value inside
the circuit. Alternatively, this issue can also be mitigated by removing
the epoch update logic or fOI"Cing to run in permissionedProverMode.

Status: Resolved [745d468|

HO02: New stake table commitment not validated

Affected Code: [LightClient.sol (line 274-1L317)

Summary: Currently the three values stakeTableBlsKeyComm,
stakeTableSchnorrKeyComm, stakeTableAmountComm of new states are left not
validated. This could allow an adversarial party to supply a malicious
stake table, giving themselves enough stake to hijack future updates.

Suggestion: Consider compressing them via computeStakeTableComm and
providing them to the circuit as a public input for validation. Alterna-
tively, this issue can also be mitigated by removing the epoch update
logic or forcing to run in permissionedProverMode.

Status: Resolved [745d468|

2.2 Medium

MO1: State history update error

Affected Code: LightClient.sol (line 322-1.340)

Summary: updateStateHistory function incorrectly computes updates by
comparing the first and last elements instead of the first and newly
added element, potentially retaining outdated data. Additionally, only
the first outdated element is removed despite there possibly being
more outdated elements that are not checked.


https://github.com/EspressoSystems/espresso-sequencer/tree/68db136d1221df584e20749ac697dcfb1ddd76ab/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/68db136d1221df584e20749ac697dcfb1ddd76ab/contracts/src/LightClient.sol#L274-L317
https://github.com/EspressoSystems/espresso-sequencer/commit/745d468078a991fb76a27421d98edf96a768aaae
https://github.com/EspressoSystems/espresso-sequencer/tree/68db136d1221df584e20749ac697dcfb1ddd76ab/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/68db136d1221df584e20749ac697dcfb1ddd76ab/contracts/src/LightClient.sol#L274-L317
https://github.com/EspressoSystems/espresso-sequencer/commit/745d468078a991fb76a27421d98edf96a768aaae
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L322-L340

Suggestion: Potential Code Example:

1

> while (

3 stateHistoryCommitments.length != 0

1 && blockTimestamp - stateHistoryCommitments[
stateHistoryFirstIndex].11BlockTimestamp

5 >= stateHistoryRetentionPeriod

6 ) {

7 delete stateHistoryCommitments[stateHistoryFirstIndex];

8 stateHistoryFirstIndex++;

10

Code Listing 1.1: Potential Code Example

Status: Resolved [4354c64, 2bd7cd6)]

2.3 Low

L01: Non-zero commitment check

Affected Code: [LightClient.sol (line 199-1L.201)

Summary: The current implementation validates whether the
genesisStakeTable commitments are non-zero. This check is redundant
as 0 is a valid commitment value, albeit with a negligible probability.

Suggestion: The checks that _genesisStakeTableState.*Comm commitments
are non-zero should be removed.

Status: Acknowledged

L02: Implementation of 1lagOverEscapeHatchThreshold deviates from
comment

Affected Code: LightClient.sol (line 355-L399)

Summary: The current implementation allows for index 1 to be checked
and will mark prevUpdateFound as true if the condition is satisfied.
Suggestion: Consider either moving the if condition (on lines 381-383)
at the start of the while loop (on line 375), or modifying the code sim-
ilarly to the provided implementation which also improves on read-

ability.


https://github.com/EspressoSystems/espresso-sequencer/commit/4354c640ddf0a80f42e84375f79fdabfdde00d7a
https://github.com/EspressoSystems/espresso-sequencer/commit/2bd7cd6518288ab2810d5aede7c5e723320eb9fd
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L199-L201
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L355-L399
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L381-L383
https://github.com/EspressoSystems/espresso-sequencer/blob/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L375

1 function lagOverEscapeHatchThreshold(uint256 blockNumber,
uint256 blockThreshold)

2 public

3 view

4 virtual

5 returns (bool)

7 uint256 updatesCount = stateHistoryCommitments.length;

9 if (blockNumber > block.number || updatesCount < 3) {
10 revert ("InsufficientSnapshotHistory");

11 }

13 uint256 endIndex = stateHistoryFirstIndex < 2 7 2 :
stateHistoryFirstIndex;
14 uint256 i = updatesCount - 1;

16 while (i >= endIndex) {
17 if (stateHistoryCommitments[i].l1BlockHeight <=
blockNumber) {
18 return (blockNumber - stateHistoryCommitments[i].
11BlockHeight) > blockThreshold;

23 revert ("InsufficientSnapshotHistory");

Code Listing 1.2: Potential Code Example
Status: Resolved [ddbc9a2, 8889al7]

2.4 Informational

101: stateHistoryRetentionPeriod not validated

Affected Code: LightClient.sol (line 210)

Summary: The property stateHistoryRetentionPeriod is not validated
during initialization, but it requires a minimum of 1 hour when updat-
ing it (on lines 439-445). This inconsistency could result in the period
being initialized to less than 1 hour, leading to an unexpected state.

Suggestion: We suggest to validate whether the property
stateHistoryRetentionPeriod is greater than 1 hour at initialization time.
This would result in removing the revert condition whether
stateHistoryRetentionPeriod is less than 1 hour in
setstateHistoryRetentionPeriod if the value can only be increased.


https://github.com/EspressoSystems/espresso-sequencer/commit/ddbc9a25c6b6d7de22aab02a99fe8ae1baf49d33
https://github.com/EspressoSystems/espresso-sequencer/commit/8889a1758a5dc66bcbf84e8d4b95d42eee30c368
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L210
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L439-L445

Status: Resolved [87{tttf]

102: Misleading documentation

Affected Code: LightClient.sol (line 222-1.223)

Summary: The documentation of the function is somewhat misleading,
as it suggests that only a permissioned prover can call the function.
However, the contract is not initialized with a permissioned prover. If
the permissioned prover is disabled or not set, the function becomes
callable by anyone.

Suggestion: We recommend initializing the smart contract with a per-
missioned prover and removing the ability to disable it. Additionally,
consider simplifying the contract by eliminating the checks related to
whether the permissioned prover is enabled. Since the contract is up-
gradeable, if a decision is later made to allow operation without a per-
missioned prover, a new version of the contract can be deployed. This
future version could include functionality to disable the permissioned
prover and reintroduce the relevant checks as needed. Alternatively,
consider updating the documentation of the function.

Status: Resolved [d65be89)

103: Misleading comment

Affected Code: LightClient.sol (line 342)

Summary: The comment is misleading as it states that addition is being
made to the genesis state, not the stateHistoryCommitments.

Suggestion: Consider updating the comment to reflect the implemented
functionality.

Status: Resolved [35912de]

104: Argument naming conflict

Affected Code: [LightClient.sol (line 355)

Summary: The argument name threshold (the affected code) is the same
as the threshold (on line 93) field in the StakeTableState struct, which
could lead to confusion or unintended behavior.

Suggestion: The argument name threshold should be renamed to
blockThreshold.

Status: Resolved [95b18d3)|


https://github.com/EspressoSystems/espresso-sequencer/commit/87fffff1dac081cacdff1c116891cab756c3ec53
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L222-L223
https://github.com/EspressoSystems/espresso-sequencer/commit/d65be8945b859e86db6c7e08843dfe31e5392ba0
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L342
https://github.com/EspressoSystems/espresso-sequencer/commit/35912de0bb64abae01f89f83897cf98ea3cae0e4
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L355
https://github.com/EspressoSystems/espresso-sequencer/blob/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L355
https://github.com/EspressoSystems/espresso-sequencer/commit/95b18d3f732131c27b1960951f65cf62e3903f9d

105: Inability to reduce stateHistoryRetentionPeriod

Affected Code: LightClient.sol (line 441)

Summary: The function setstateHistoryRetentionPeriod reverts when re-
ducing the retention period, which can lock in a large value if set by
mistake.

Suggestion: Instead of reverting when the retention period decreases,
updateStateHistory could be called with the last finalized state to delete
the newly outdated states.

Status: Acknowledged

I106: Unreachable return statement

Affected Code: LightClient.sol (line 424)

Summary: The current implementation of getHotShotCommitment includes
an unreachable return statement.

Suggestion: We recommend to refactor the unreachable return state-
ment.

Status: Resolved [ae0Oeblb]


https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L441
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol
https://github.com/EspressoSystems/espresso-sequencer/tree/745d468078a991fb76a27421d98edf96a768aaae/contracts/src/LightClient.sol#L424
https://github.com/EspressoSystems/espresso-sequencer/commit/ae0eb1bdd3ec97d1d6939fcf764e339617ba75fb

References

BBC™24. Jeb Bearer, Benedikt Bnz, Philippe Camacho, Binyi Chen, Ellie Davidson,
Ben Fisch, Brendon Fish, Gus Gutoski, Fernando Krell, Chengyu Lin, Dahlia
Malkhi, Kartik Nayak, Keyao Shen, Alex Xiong, Nathan Yospe, and Sis-
han Long. The espresso sequencing network: HotShot consensus, tiramisu
data-availability, and builder-exchange. Cryptology ePrint Archive, Paper
2024/1189, 2024.



About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of a small number of scientists and engineers spe-
cializing in many aspects of blockchain science. We work with industry
partners who are looking to advance the state-of-the-art in our field to
help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

A

10



	 Espresso Hotshot Light Client Audit 
	References


