
Snowfork

Beefy client audit

Nov 17, 2023



Overview
Introduction

Common Prefix was commissioned to perform a security audit on Snowfork’s Beefy Client

smart contracts, at commit hash 08c5817009931f7ed9c21f2be0b8eed6d4b3a3d8.

This is the second audit we have conducted on the Beefy Client. The report for the first audit can
be found here. Key modifications in this updated version of the contracts include::

● A more sophisticated formula for the computation of the minimum number of required
signatures, which takes into account not only the total number of validators but also
off-chain data related to the validators and the number of times a validator’s signature
has been previously used during the same session. Details can be found here.

● A more detailed parsing of the payload of the commitment, to avoid possible
ambiguities.

● Introduction of the Verification.sol library, facilitating commitment verification
within the Beefy Client.

Except for the liveness issue (Medium-4), all the other issues detected during the first audit have
been resolved in this new version.

The files inspected are the following:

BeefyClient.sol

Verification.sol

Math.sol

Uint16Array.sol

1

https://github.com/Snowfork/snowbridge/tree/08c5817009931f7ed9c21f2be0b8eed6d4b3a3d8
https://docs.google.com/document/d/1hYrTGmNWfg5CxqeMOtPougiTJc7k32e7p2uHF8yfn9s/edit?usp=sharing
https://docs.snowbridge.network/architecture/verification/polkadot#signature-sampling


Disclaimer

Note that this audit does not give any warranties on the bug-free status of the given smart

contracts, i.e. the evaluation result does not guarantee the nonexistence of any further findings

of security issues. This audit report is intended to be used for discussion purposes only.

Functional correctness should not rely on human inspection but be verified through thorough

testing. We always recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of the project.

Findings Severity Breakdown

The findings are classified under the following severity categories according to the impact and

the likelihood of an attack.

Level Description

Critical Logical errors or implementation bugs that are easily exploited and may
lead to any kind of loss of funds

High Logical errors or implementation bugs that are likely to be exploited and
may have disadvantageous economic impact or contract failure

Medium Issues that may break the intended contract logic or lead to DoS attacks

Low
Issues harder to exploit (exploitable with low probability), issues that lead
to poor contract performance, clumsy logic or seriously error-prone
implementation

Informational Advisory comments and recommendations that could help make the
codebase clearer, more readable and easier to maintain

2



Findings
Critical

No critical issues found.

High

No high issues found.

Medium
No medium issues found.

Low

LOW-1
Inconsistency between implementation and documentation regarding the
minimum number of signatures

Contract(s) BeefyClient.sol

Status Resolved

Description

In the last step of the verification algorithm of the Beefy client, N validators are randomly chosen

and the light client verifies that they have signed the commitment. The formula for N is the

following:

3



where R,V,S are terms available only off-chain and used to compute the minimum number of

required signatures, a value passed to the contract during its construction, V is the total number

of validators in the current session and C is the number a validator has been used within this

section. The docs provide more details and motivation for this formula.

In the code, however, in the BeefyClient::computeNumOfRequiredSignatures function, number N

is computed as:

which could be a number less than the N of the documentation.

Recommendation

We suggest fixing the BeefyClient::computeNumOfRequiredSignatures function to

align with the formula of the documentation. This adjustment ensures that the analysis provided

in the documentation accurately corresponds to the implemented logic within the BeefyClient.

Alleviation

The team fixed the formula at commit hash e4c913521f50f6350100399f18e0cae529ad067a.

4

https://www.codecogs.com/eqnedit.php?latex=N%3D%5Clceil%20log_2%5Cleft(%20RV%5Cfrac%7B1%7D%7BS%7D(75%2BE)172.8%20%5Cright)%20%5Crceil%2B1%2B2%5Clceil%20log_2(C)%5Crceil%20%5C%5C%20%5C%5C%5C%5C%20%3D%5Clceil%20minimumNumRequiredSignatures%2Blog_2(V)%20%5Crceil%2B1%2B2%5Clceil%20log_2(C)%5Crceil#0
https://docs.snowbridge.network/architecture/verification/polkadot#signature-sampling
https://www.codecogs.com/eqnedit.php?latex=minimumNumOfRequiredSignatures%2B%5Clceil%20log_2(V-minimumNumOfRequiredSignatures)%5Crceil%2B1%2B%5Clceil%20log_2(C)%5Crceil#0
https://github.com/Snowfork/snowbridge/tree/e4c913521f50f6350100399f18e0cae529ad067a


LOW-2
The functions of the Uint16Array library can access and modify out of
(the real) bounds positions

Contract(s) Uint16Array.sol

Status Resolved

Description

Uint16Array is a utility library designed for the efficient storage of a uint16 array in an array

of type uint256. Each uint256 entry holds 16 uint16 values. If the length of the uint16

array is not a multiple of 16, the resulting uint256 array generated by the create function can

hold more uint16 entries than initially anticipated. There is no way to determine given the

uint256 array. In instances where the get(self, index) function returns zero, it becomes

impossible to differentiate whether the corresponding uint16 value is genuinely zero or if the

index is out of bounds, i.e. greater than or equal to .

Recommendation

While our analysis did not reveal any immediate issues with the Beefy Client associated with the

described problem, we express concern about the error-prone design of Uint16Array. We

recommend fixing this potential issue by incorporating an additional variable, uint156

lengthOfThe16BitArray, into the Array structure. This modification enhances the clarity

and reliability of the Uint16Array design, providing a more robust design.

Alleviation

The team addressed the issue at commit hash e4c913521f50f6350100399f18e0cae529ad067a

by introducing an extra variable at the Array structure. They also validate that the index does

not surpass the Array length in the get and set functions.

5

https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=l#0
https://github.com/Snowfork/snowbridge/tree/e4c913521f50f6350100399f18e0cae529ad067a


LOW-3 Missing input validation

Contract(s) BeefyClient.sol, Verification.sol

Status Partially resolved

Description

● In the constructor of BeefyClient a check that nextValidatorSet.id ==

currentValidatorSet+1 is missing.

● In BeefyClient::submitInitial should be validated that

commitment.blockNumber > latestBeefyBlock.

● In a Merkle tree with input vectors of not fixed length it is trivial to find collisions (one

vector of length 2n and another of length n), therefore the standard practice is to hash

not only the leaf but the length of the vector/width of the tree as well. Additionally, it is

advisable to verify if the proof has the proper length i.e. log2(width). These standard

practices are not followed in the Beefy Client. Although the design is still secure,

because of the way the input data are encoded, we suggest incorporating these extra

measures.

Specifically, in BeefyClient::isValidatorInSet, the hashed leaf should be the

hash of the concatenation of vset.length and account –instead of the hash of the

account only- or other extra identifiers should be hashed to distinguish nodes and leaves

(check EIP-712) and also it should verified that proof.length == log2(vset).

Similar validations should take place in BeefyClient::verifyMMRLeafProof and

Verification::verifyCommitment. Even better these validations could be added

in the libraries SubstrateMerkleProof::computeRoot and

MMRProof::verifyLeafProof.

Recommendation

We strongly recommend incorporating these sanity checks into the relevant functions to prevent

potential mistakes.

6

https://eips.ethereum.org/EIPS/eip-712


Alleviation

The team fixed the first two issues at commit hash

e4c913521f50f6350100399f18e0cae529ad067a. They decided against incorporating extra

validations on the Merkle proofs, as doing so would increase the complexity of the code.

Furthermore, even the existing design is protected against the possible issues we mentioned

through the encoding of the data which will be used as leaves in the Merkle trees.

Informational/Suggestions

INFO-1 commitPrevRandao could be callable by anyone

Contract(s) BeefyClient.sol

Status Info

Description

The second step a relayer should take to submit a commitment is to call the

commitPrevRandao function with the commitment hash as an argument. This function uses

the provided commitment hash and the address of the caller to compute the index of the ticket,

therefore the randomness for a ticket can only be produced by the relayer who constructed it.

This fact gives the relayer some flexibility to manipulate the randomness.

While the protocol mitigates this risk by increasing the minimum number of required proofs in

a specific way described here , we believe it could be a good extra measure to allow anyone to

call commitPrevRdanao and produce the randomness for a ticket. That way other relayers can

frontrun a malicious one, calling commitPrevRandao and producing randomness for his ticket.

7

https://github.com/Snowfork/snowbridge/tree/e4c913521f50f6350100399f18e0cae529ad067a
https://docs.snowbridge.network/architecture/verification/polkadot#signature-sampling


This prevents the malicious relayer from iteratively executing steps 1 and 2 until obtaining

favorable randomness.

Recommendation

We suggest making the prevRandao function callable with the ticket index and not the

commitment hash as its argument. That way anyone can produce the randomness for a ticket

and not only its creator.

INFO-2 Manually passing the Beefy Client address is error-prone

Contract(s) Verification.sol

Status Info

Description

The Verification::verifyCommitment function verifies a commitment using the latest

stored root in the Beefy Client. But the address of the Beefy Client should be passed to this

function manually, as one of its arguments. This is error-prone e.g. an EOA trying to verify a

commitment could be misled related to the Beefy Client address, a contract trying to verify a

commitment should have the Beefy Client address stored and should have implemented a

procedure to update it in case this address changes.

Recommendation

We recommend the implementation of a registry smart contract tasked with maintaining the

Beefy Client address, allowing a trusted entity to update it. To achieve this, the address of the

registry contract should be stored as a constant in the Verification contract. Subsequently, the

Verification contract should call the registry to obtain the Beefy Client address whenever

8



necessary. This approach enhances flexibility, security, and ease of maintenance in managing

the Beefy Client address.

INFO-3 Redundancy

Contract(s) BeefyClient.sol

Status Resolved

Description

In BeefyClient::submitInitial the check

if (commitment.validatorSetID != vset.id) {
revert InvalidCommitment();

}

is redundant, since the vset by its definition will always have the same id as the commitment:

ValidatorSetState storage vset;
uint16 signatureUsageCount;

if (commitment.validatorSetID == currentValidatorSet.id)
. . .
vset = currentValidatorSet;

} else if (commitment.validatorSetID == nextValidatorSet.id) {
. . .
vset = nextValidatorSet;

} else {
revert InvalidCommitment();

}

9



Alleviation

The team addressed the issue at commit hash e4c913521f50f6350100399f18e0cae529ad067a

removing the redundant if-statement.

INFO-4 Code optimization/simplification

Contract(s) Verification.sol,Math.sol

Status Resolved

Description

● In Verification::encodeDigestItem the first 3 if-else if branches could be

merged. Also, although encodeDigestItem is expected to be called only by

verifyCommitment (through encodeDigestItems), if other contracts use this library

function for other purposes its InvalidParachainHeader() error message could be

confusing, since the argument of the function is not a whole parachain header.

● ScaleCodec::checkedEncodeCompactU32 expects a uint256 argument, therefore

the following type castings are unnecessary since digestItems.length,

header.number and encodedHeader.length are of type uint256

Verification.sol

function encodeDigestItems(DigestItem[] calldata digestItems) internal pure returns (bytes

memory) {// encode all digest items into a buffer

bytes memory accum = hex"";//PC: check this

for (uint256 i = 0; i < digestItems.length; i++) {

10

https://github.com/Snowfork/snowbridge/tree/e4c913521f50f6350100399f18e0cae529ad067a


accum = bytes.concat(accum, encodeDigestItem(digestItems[i]));

}

// Encode number of digest items, followed by encoded digest items

return bytes.concat(ScaleCodec.checkedEncodeCompactU32(uint32(digestItems.length)),

accum);

}

function createParachainHeaderMerkleLeaf(bytes4 encodedParaID, ParachainHeader calldata

header)

internal

pure

returns (bytes32)

{

. . .

ScaleCodec.checkedEncodeCompactU32(uint32(header.number))

. . .

}

function createParachainHeader(bytes4 encodedParaID, ParachainHeader calldata header)

internal

Pure

returns (bytes memory)

{

. . .

ScaleCodec.checkedEncodeCompactU32(uint32(encodedHeader.length))

. . .

}

● The encoding of a parachain header in Verification::createParacahinHeader

contains the number of digest items in the parachain header twice

function createParachainHeader(bytes4 encodedParaID, ParachainHeader calldata header)

internal

pure

returns (bytes memory)

{

bytes memory encodedHeader = bytes.concat(

// H256

header.parentHash,

// Compact unsigned int

ScaleCodec.checkedEncodeCompactU32(header.number),

// H256

header.stateRoot,

// H256

11



header.extrinsicsRoot,

// Vec<DigestItem>

ScaleCodec.checkedEncodeCompactU32(header.digestItems.length),

encodeDigestItems(header.digestItems)//CP: encodeDigestItems includes also the

header.digestItems.length in the encoding

);

. . .

}

● If the Snowfork team fixes the double encoding of the digest items length issue

described above, then Verifications::createParachainHeaderMerkleLeaf

could be simplified, since then it will be just the keccak256 of the output of

Verification::createParachainHeader.

● In Math::saturatingSub the > operator in the if branch could be replaced by >= i.e.

immediately return 0 when a and b are equal, instead of computing their difference,

which will be 0.

Alleviation

The team incorporated in the contracts all the suggested improvements at commit hash

he4c913521f50f6350100399f18e0cae529ad067a.

INFO-5 Typos

Contract(s) Uint16Array.sol

Status Resolved

Description

● Comment describing the purpose of the library:

12

https://github.com/Snowfork/snowbridge/tree/e4c913521f50f6350100399f18e0cae529ad067a


○ “Layout of 8 counters…”: 8 should be 32.

○ the computation of the bit-index of the counter with logical index 22 should be 96

(22=1*16+6 and 6*16=96) to 111.

● Comments in get and set: “Mask out the first 4 bytes…” bytes should be bits.

Alleviation

The team fixed the typos at commit hash e4c913521f50f6350100399f18e0cae529ad067a.

13

https://github.com/Snowfork/snowbridge/tree/e4c913521f50f6350100399f18e0cae529ad067a


About Common Prefix

Common Prefix is a blockchain research, development, and consulting company consisting of a

small number of scientists and engineers specializing in many aspects of blockchain science.

We work with industry partners who are looking to advance the state-of-the-art in our field to

help them analyze and design simple but rigorous protocols from first principles, with provable

security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as well as the

pragmatic auditing of implementations in both core consensus technologies and application

layer smart contracts.

14


